Living with a Star (LWS) Space Environment Testbeds (SET) Status

Dana A. Brewer June 20, 2003

Living With a Star (LWS) Program Architecture

Living With a Star Space Environment Testbeds (SET)

Objective

Improve the engineering approach to accommodate and/or mitigate the effects of solar variability on spacecraft design & operations

Approach

- ? Collect data in space to validate the physical mechanisms for performance degradation in the space environment
- ? Collect data in space to validate new & existing ground test protocols for the effects of solar variability on emerging technologies
- ? Develop & validate engineering environment models, tools, & databases for spacecraft design & operations

Scope

Spacecraft hardware & design /operations tools whose performance changes with solar variability

Space Environment Testbeds (SETs): 2 Components With Competed Investigations

NASA Research Announcement (NRA) 8-31: 8 Awards in 3/02 NRA 02-OSS-04 for SET-1 Investigations:

Awards 5/03

SET Data Analysis Component:

- Models, tools, or databases that describe performance variations in space in the presence of a spacecraft that change due to solar variability
- 5 of 8 reports available now; 3 have contract extensions

SET Space Flight Component:

Mines

- Investigations that include data collection from an experiment in space whose data are used to improve the physics-based understanding of response of systems to the solar varying space environments
- Technology for >1 mission

Awards from SET Data Analysis NRA

- Analysis of CRRES Pulse Height Analyzer (PHA) Data for Low-Linear Energy Transfer (LET) Events
- Solar Variability, the Near-Earth Radiation Environment, and Transient Effects on Microelectronics
- Displacement Damage Effects in Solar Cells-Mining Damage Data from the Microelectronic and Photonics Testbed (MPTB) Space Experiment
- Modeling Charge Collection in Detector Arrays
- Study of Total Ionizing Dose Effects of High-Z Material Spot Shields on Field Programmable Gate Arrays (FPGA) Using Flight Data from Microelectronics and Photonics Testbed (MPTB) Experiment
- Characterization of Magnetospheric Spacecraft Charging Environments Using the LANL Magnetospheric Plasma Analyzer Data Set
- Electrostatic Return of Contaminants
- Mining CRRES IDM Pulse Data and CRRES Environment Data to Improve Spacecraft Charging/Discharging Models and Guidelines

Space Environments Testbed (SET) Concept

5 Categories for Investigations

1. Characterization of the space environment in the presence of a spacecraft

2. Performance improvement methodology for microelectronics used in space

Ultra Low Power Electronics

4. Accommodation and/or mitigation of charging/discharging effects on spacecraft & spacecraft components

3. Accommodation and/or Mitigation of Space Environment Effects for detectors & sensors

Solar Array Degradation

Noise & Degradation CCD, APS, IR, etc. Technologies

5. Definition of mechanisms for materials' degradation and performance characterization of materials designed for shielding from ionizing radiation

06-20-03 LWS-SET to LWS MOWG

7 Funded SET-1 Proposals

- Development of Space-based Test Platform for the Characterization of Proton Effects and Enhanced Low Dose Rate Sensitivity in Bipolar Junction Transistors
 - Hugh Barnaby/University of Arizona
 - Characterize Enhanced Low-Dose Rate Sensitivity (ELDRS) and proton effects in bipolar junction transistors (BJT) using space data, a first
- Cosmic Radiation Environment Dosimetry and Charging Experiment
 - Clive Dyer/Qinetiq Ltd.
 - Monitor energetic proton fluxes and linear energy transfer spectra of ions to interpret single event effects data
 - Monitor electron fluxes and charging currents responsible for electrostatic charging
 - Monitor total ionizing dose as a function of shield depth to permit correlation with associated device degradation

7 Funded SET-1 Proposals (Continued)

- Energetic Charged Particle Spectrometer for Characterizing the Environment Around the LWS-SET Spacecraft
 - Gary Galica/Physical Sciences Inc.
 - Characterize the space environment in the presence of the spacecraft using a compact, energetic particle spectrometer with a flexible energy range
- Definition of the Mechanisms for On-Orbit Degradation of Variable Emissivity, Variable Absorptivity and Variable Reflectivity Materials Degradation
 - Gary Galica/Physical Sciences Inc.
 - Characterize and understand the performance as well as the mechanisms & degradation of new thermal control materials with variable absorptivity, emissivity, and reflectivity in an ionizing radiation environment in an active experiment (change as function of time)

7 Funded SET-1 Proposals (Continued)

- Space Flight Evaluation of the Radiation Shielding Performance of PolyRAD
 - Edward Long/Longhill Engineering
 - Evaluate & document the space flight performance of PolyRAD, an advanced radiation spot shield material for reducing total absorbed dose (estimated 7X reduction) that enables the use of Commercial-Off-the-Shelf (COTS) microelectronics.
- Dosimetry Intercomparison and Miniaturization Experiment
 - Peter McNulty/Clemson University
 - Flight test 6 different types of solid state dosimeters in space to:
 - Characterize total dose, single event upsets and displacement damage
 - Inter-compare accuracy, reliability, & operational characteristics
 - Test effects of small amounts of spot shielding using an array of microscopic dosimeters in a single chip

7 Funded SET-1 Proposals (Continued)

- Total Dose and SEU Radiation Hardness Degradation due to the Addition of Built-In Self Test (BIST) to Mixed Signal Electronic Circuits
 - Bert Vermeire/Ridgetop Group Inc.
 - Test a design rule checker and 2 BIST structures in a 0.25 um mixed signal application, a flash analog-to-digital converter (ADC)

Where Are We & Where Do We Go From Here?

- Access to space agreements in work
- Workshop to develop requirements for 2008 opportunities planned for Sept. 12
- Partner for focal plane array testbed in 2008 identified;
 agreement in work
- A new data mining NRA will occur NET 2007 due to funding availability
 - Genesis returned materials analysis would be a candidate for funding

Backup Charts

COTS-1: Linear Enhanced Low Dose Rate Sensitivity (ELDRS)

Purpose

- Collect data in space to validate ground test protocols for linear bipolar devices that exhibit ELDRS
 - ELDRS is failure at a lower cumulative total integrated dose (< 10X) in space compared to accelerated ground test dose rates

NASA Benefit

 Provide more consistent performance & lifetime

NASA Application

 Linear bipolar devices are common in comparators and operational amplifiers -- basic building blocks in all NASA spacecraft & instruments

History

 Designed for STRV 1-d; will be rebuilt

Partners

 NAVSEA-Crane, Vanderbilt University, NASA GSFC, JPL, DoD, Industry

Leveraging

- The NASA Electronic Parts & Packaging Program (NEPP) delivers a ground test & technology guideline in FY 2002 (DoD co-funding)
- Devices provided by industry

SETPath Funding: \$150K **Development Path**

 None. Existing NAVSEA-Crane design with mission-specific modifications

Delivery Date: September 2002 **Risk of Schedule Slip**

Low; existing design

COTS-1: Linear Single Event Transients (LSET)

Purpose

 Collect data in space to validate single event transient (SET) performance models & test protocols for linear bipolar devices

NASA Benefit

 Provide more consistent performance & lifetime; lower likelihood of LSET anomalies as observed in Cassini, MAP, & TDRSS

NASA Application

 Linear bipolar devices are common in comparators and operational amplifiers
 -- basic building blocks in all NASA spacecraft & instruments

History

Designed for STRV 1-d; will be re-built

Partners

 Aerospace Corp., NASA GSFC, NAVSEA-Crane, Vanderbilt University, JPL, DoD, Industry

Leveraging

- The NASA Electronics Parts & Packaging (NEPP) supports development of ground radiation tests, protocols, & prediction models (DoD co-funding)
 - Ground test protocol will be issued in FY 2002
- Devices provided by industry

SETPath Funding: \$75K **Development Path**

 Existing design (Aerospace Corp) with mission-specific modifications

Delivery Date: September 2002

Risk of Schedule Slip

Low; existing design

COTS-2: Digital COTS with FPGA Add-On

Purpose

- Collect data in space to validate single event effect (SEE) & total integrated dose (TID) performance models for:
 - Commercial fuzzy logic processors;
 - Static random access memories (SRAM); &
 - Field programmable gate array (FPGA) logic devices

NASA Benefit

 Reduce design margins & provide more consistent performance in space

NASA Application

- SRAMS: Solid state recorders
- FPGAs: Replace custom solutions
- Fuzzy logic: Robotics, docking, & constellation management applications

Partners

NASA GSFC, CNES, ONERA, TIMA

Development Path

 None. Board is already qualified to flight levels

SETPath Funding

 \$25K for contract support of integration & test

Delivery Date

Available now

Risk of Schedule Slip

Low; existing hardware

Ground data availability

 Heavy ion & proton data in hand from Orsay, France

History:

Built for STRV 1-d but not flown

COTS-3: Optocouplers

Purpose

- Collect data in space to validate single event effect (SEE), total integrated dose (TID), and device displacement damage (DDD) performance models & test protocols for optocouplers
 - Parts of the models are also applicable to high-speed fiber optic links

NASA Benefit

- Reduce design margins & increase reliability
 - Anomalies on HST, TERRA, & TOPEX/Poseidon)

NASA Application

 Used to isolate electrical signals between spacecraft sub-systems & instruments

<u>History</u>

 Designed for STRV- 1d; STRV-1d devices will be updated

Partners

NASA GSFC, JPL, DoD, Industry

Leveraging

- The NASA Electronic Parts & Packaging Program (NEPP) delivers a ground test & technology guideline in FY 2002 (DoD co-funding)
- Devices provided by industry

Development Path

 Existing design; mission-specific interface modifications & newer devices

SETPath Funding: \$75K

Delivery Date: September 2002

Risk of Schedule Slip: Low; existing design

Ground data availability

Heavy ion & proton data in hand

Field Programmable Gate Array (FPGA) Technology Concept Validation

Purpose

 Collect data in space to validate single event effect (SEE), total integrated dose (TID), and device displacement damage (DDD) performance models & test protocols for COTS and environment-hardened FPGAs

NASA Benefit

 Provide more consistent performance in spacecraft electronics systems.

NASA Application

 Replace custom solutions in electronics system design at a fraction of the cost in virtually all NASA spacecraft; save power, weight, volume, & schedule

History

 Designed for STRV 1-d; devices will be updated to state of the art

Partners

• NASA GSFC, DoD, Industry

Leveraging

- The NASA Electronics Parts & Packaging Program & DoD support development of ground test protocols, guidelines, & technology development
- Devices provided by DoD & industry

SETPath Funding Required

• \$75K

Development Path

 Existing design (NASA GSFC) with mission-specific modifications

Delivery Date

September 2002

Risk of Schedule Slip

Low – existing design

Organizations Responsible for SETPath Experiment Components

Experiment - Who Does It Digital COTS with FPGA Add-On COTS-2	Data Collection in Space SETPath	Space Data Reduction SETPath, CNES	Engineering Guidelines Development NASA NEPP; CNES	Data Infusion LWS SET, NASA
Linear Enhanced Low Dose Rate Sensitivity (ELDRS)	SETPath	SETPath	NASA NEPP, JEDEC, DTRA, NAVSEA, NEPAG, ESA	LWS SET, NASA NEPP
Linear Single Event Transient (LSET) COTS-1	SETPath	SETPath	NASA NEPP, LWS SET NRA, DTRA, JEDEC, NASA NEPAG, ESA	LWS SET, NASA NEPP
Optocouplers COTS-3			NASA NEPP, LWS SET NRA, DTRA, JEDEC, NASA NEPAG, ESA	LWS SET, NASA NEPP
Correlative Environment Monitor & Dosimetry			N/A	LWS SET